Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.

Identifieur interne : 000004 ( Main/Exploration ); précédent : 000003; suivant : 000005

Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.

Auteurs : Ethan J. Andersen [États-Unis] ; Madhav P. Nepal [États-Unis] ; Jordan M. Purintun [États-Unis] ; Dillon Nelson [États-Unis] ; Glykeria Mermigka [Grèce] ; Panagiotis F. Sarris [Grèce, Royaume-Uni]

Source :

RBID : pubmed:32849852

Abstract

Plants are in a constant evolutionary arms race with their pathogens. At the molecular level, the plant nucleotide-binding leucine-rich repeat receptors (NLRs) family has coevolved with rapidly evolving pathogen effectors. While many NLRs utilize variable leucine-rich repeats (LRRs) to detect effectors, some have gained integrated domains (IDs) that may be involved in receptor activation or downstream signaling. The major objectives of this project were to identify NLR genes in wheat (Triticum aestivum L.) and assess IDs associated with immune signaling (e.g., kinase and transcription factor domains). We identified 2,151 NLR-like genes in wheat, of which 1,298 formed 547 gene clusters. Among the non-toll/interleukin-1 receptor NLR (non-TNL)-like genes, 1,552 encode LRRs, 802 are coiled-coil (CC) domain-encoding (CC-NBS-LRR or CNL) genes, and three encode resistance to powdery mildew 8 (RPW8) domains (RPW8-NBS-LRR or RNL). The expansion of the NLR gene family in wheat is attributable to its origin by recent polyploidy events. Gene clusters were likely formed by tandem duplications, and wheat NLR phylogenetic relationships were similar to those in barley and Aegilops. We also identified wheat NLR-ID fusion proteins as candidates for NLR functional diversification, often as kinase and transcription factor domains. Comparative analyses of the IDs revealed evolutionary conservation of more than 80% amino acid sequence similarity. Homology assessment indicates that these domains originated as functional non-NLR-encoding genes that were incorporated into NLR-encoding genes through duplication events. We also found that many of the NLR-ID genes encode alternative transcripts that include or exclude IDs, a phenomenon that seems to be conserved among species. To verify this, we have analyzed the alternative transcripts that include or exclude an ID of an NLR-ID from another monocotyledon species, rice (Oryza sativa). This indicates that plants employ alternative splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling components. Genomic and expression data support the hypothesis that wheat uses alternative splicing to include and exclude IDs from NLR proteins.

DOI: 10.3389/fgene.2020.00898
PubMed: 32849852
PubMed Central: PMC7422411


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.</title>
<author>
<name sortKey="Andersen, Ethan J" sort="Andersen, Ethan J" uniqKey="Andersen E" first="Ethan J" last="Andersen">Ethan J. Andersen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Francis Marion University, Florence, SC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Francis Marion University, Florence, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nepal, Madhav P" sort="Nepal, Madhav P" uniqKey="Nepal M" first="Madhav P" last="Nepal">Madhav P. Nepal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Microbiology, South Dakota State University, Brookings, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Purintun, Jordan M" sort="Purintun, Jordan M" uniqKey="Purintun J" first="Jordan M" last="Purintun">Jordan M. Purintun</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Microbiology, South Dakota State University, Brookings, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Dillon" sort="Nelson, Dillon" uniqKey="Nelson D" first="Dillon" last="Nelson">Dillon Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mermigka, Glykeria" sort="Mermigka, Glykeria" uniqKey="Mermigka G" first="Glykeria" last="Mermigka">Glykeria Mermigka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Crete, Crete, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Department of Biology, University of Crete, Crete</wicri:regionArea>
<wicri:noRegion>Crete</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Crete, Crete, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Department of Biology, University of Crete, Crete</wicri:regionArea>
<wicri:noRegion>Crete</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular Biology and Biotechnology, FORTH, Crete, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Institute of Molecular Biology and Biotechnology, FORTH, Crete</wicri:regionArea>
<wicri:noRegion>Crete</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter</wicri:regionArea>
<wicri:noRegion>Exeter</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32849852</idno>
<idno type="pmid">32849852</idno>
<idno type="doi">10.3389/fgene.2020.00898</idno>
<idno type="pmc">PMC7422411</idno>
<idno type="wicri:Area/Main/Corpus">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000126</idno>
<idno type="wicri:Area/Main/Curation">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000126</idno>
<idno type="wicri:Area/Main/Exploration">000126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.</title>
<author>
<name sortKey="Andersen, Ethan J" sort="Andersen, Ethan J" uniqKey="Andersen E" first="Ethan J" last="Andersen">Ethan J. Andersen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Francis Marion University, Florence, SC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Francis Marion University, Florence, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nepal, Madhav P" sort="Nepal, Madhav P" uniqKey="Nepal M" first="Madhav P" last="Nepal">Madhav P. Nepal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Microbiology, South Dakota State University, Brookings, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Purintun, Jordan M" sort="Purintun, Jordan M" uniqKey="Purintun J" first="Jordan M" last="Purintun">Jordan M. Purintun</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Microbiology, South Dakota State University, Brookings, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Dillon" sort="Nelson, Dillon" uniqKey="Nelson D" first="Dillon" last="Nelson">Dillon Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mermigka, Glykeria" sort="Mermigka, Glykeria" uniqKey="Mermigka G" first="Glykeria" last="Mermigka">Glykeria Mermigka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Crete, Crete, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Department of Biology, University of Crete, Crete</wicri:regionArea>
<wicri:noRegion>Crete</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Crete, Crete, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Department of Biology, University of Crete, Crete</wicri:regionArea>
<wicri:noRegion>Crete</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular Biology and Biotechnology, FORTH, Crete, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Institute of Molecular Biology and Biotechnology, FORTH, Crete</wicri:regionArea>
<wicri:noRegion>Crete</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter</wicri:regionArea>
<wicri:noRegion>Exeter</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants are in a constant evolutionary arms race with their pathogens. At the molecular level, the plant nucleotide-binding leucine-rich repeat receptors (NLRs) family has coevolved with rapidly evolving pathogen effectors. While many NLRs utilize variable leucine-rich repeats (LRRs) to detect effectors, some have gained integrated domains (IDs) that may be involved in receptor activation or downstream signaling. The major objectives of this project were to identify NLR genes in wheat (
<i>Triticum aestivum</i>
L.) and assess IDs associated with immune signaling (e.g., kinase and transcription factor domains). We identified 2,151 NLR-like genes in wheat, of which 1,298 formed 547 gene clusters. Among the non-toll/interleukin-1 receptor NLR (non-TNL)-like genes, 1,552 encode LRRs, 802 are coiled-coil (CC) domain-encoding (CC-NBS-LRR or CNL) genes, and three encode resistance to powdery mildew 8 (RPW8) domains (RPW8-NBS-LRR or RNL). The expansion of the NLR gene family in wheat is attributable to its origin by recent polyploidy events. Gene clusters were likely formed by tandem duplications, and wheat NLR phylogenetic relationships were similar to those in barley and
<i>Aegilops</i>
. We also identified wheat NLR-ID fusion proteins as candidates for NLR functional diversification, often as kinase and transcription factor domains. Comparative analyses of the IDs revealed evolutionary conservation of more than 80% amino acid sequence similarity. Homology assessment indicates that these domains originated as functional non-NLR-encoding genes that were incorporated into NLR-encoding genes through duplication events. We also found that many of the NLR-ID genes encode alternative transcripts that include or exclude IDs, a phenomenon that seems to be conserved among species. To verify this, we have analyzed the alternative transcripts that include or exclude an ID of an NLR-ID from another monocotyledon species, rice (
<i>Oryza sativa</i>
). This indicates that plants employ alternative splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling components. Genomic and expression data support the hypothesis that wheat uses alternative splicing to include and exclude IDs from NLR proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32849852</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.</ArticleTitle>
<Pagination>
<MedlinePgn>898</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2020.00898</ELocationID>
<Abstract>
<AbstractText>Plants are in a constant evolutionary arms race with their pathogens. At the molecular level, the plant nucleotide-binding leucine-rich repeat receptors (NLRs) family has coevolved with rapidly evolving pathogen effectors. While many NLRs utilize variable leucine-rich repeats (LRRs) to detect effectors, some have gained integrated domains (IDs) that may be involved in receptor activation or downstream signaling. The major objectives of this project were to identify NLR genes in wheat (
<i>Triticum aestivum</i>
L.) and assess IDs associated with immune signaling (e.g., kinase and transcription factor domains). We identified 2,151 NLR-like genes in wheat, of which 1,298 formed 547 gene clusters. Among the non-toll/interleukin-1 receptor NLR (non-TNL)-like genes, 1,552 encode LRRs, 802 are coiled-coil (CC) domain-encoding (CC-NBS-LRR or CNL) genes, and three encode resistance to powdery mildew 8 (RPW8) domains (RPW8-NBS-LRR or RNL). The expansion of the NLR gene family in wheat is attributable to its origin by recent polyploidy events. Gene clusters were likely formed by tandem duplications, and wheat NLR phylogenetic relationships were similar to those in barley and
<i>Aegilops</i>
. We also identified wheat NLR-ID fusion proteins as candidates for NLR functional diversification, often as kinase and transcription factor domains. Comparative analyses of the IDs revealed evolutionary conservation of more than 80% amino acid sequence similarity. Homology assessment indicates that these domains originated as functional non-NLR-encoding genes that were incorporated into NLR-encoding genes through duplication events. We also found that many of the NLR-ID genes encode alternative transcripts that include or exclude IDs, a phenomenon that seems to be conserved among species. To verify this, we have analyzed the alternative transcripts that include or exclude an ID of an NLR-ID from another monocotyledon species, rice (
<i>Oryza sativa</i>
). This indicates that plants employ alternative splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling components. Genomic and expression data support the hypothesis that wheat uses alternative splicing to include and exclude IDs from NLR proteins.</AbstractText>
<CopyrightInformation>Copyright © 2020 Andersen, Nepal, Purintun, Nelson, Mermigka and Sarris.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Andersen</LastName>
<ForeName>Ethan J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Francis Marion University, Florence, SC, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nepal</LastName>
<ForeName>Madhav P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Purintun</LastName>
<ForeName>Jordan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Dillon</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mermigka</LastName>
<ForeName>Glykeria</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Crete, Crete, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sarris</LastName>
<ForeName>Panagiotis F</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Crete, Crete, Greece.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biology and Biotechnology, FORTH, Crete, Greece.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">alternative splicing</Keyword>
<Keyword MajorTopicYN="N">disease resistance</Keyword>
<Keyword MajorTopicYN="N">integrated domain</Keyword>
<Keyword MajorTopicYN="N">pathogen resistance</Keyword>
<Keyword MajorTopicYN="N">wheat R-genes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32849852</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2020.00898</ArticleId>
<ArticleId IdType="pmc">PMC7422411</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1983 Feb 11;219(4585):689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17814030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Apr;13(3):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21952112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Feb 20;18(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28230724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Oct 23;3:237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23109935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1250092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):558-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:291-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23682913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2000 Feb;84(2):203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30841334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Mar;20(3):116-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15049302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 15;26(20):2620-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20736339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:487-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 05;6:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25798142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Apr 02;14(4):7302-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23549266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):2095-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26839128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 21;161(5):1074-1088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):498-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Feb 15;13:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22336098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1982;1(8):945-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6329717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2012 Feb;24(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):618-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26848538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 21;161(5):1089-1100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2016 Feb 19;14:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26891798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):809-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Oct;27(10):2991-3012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26452600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26578574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24840291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 Dec;7(12):1243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 13;5:397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2017 Nov 1;18(1):210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29089032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 4;496(7443):87-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 28;477(7366):592-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21874021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2016 Aug;38(8):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27339076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Dec 2;354(6316):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27934708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):783-786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 25;5:606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25506347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):447-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):2172-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26869702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1604-1606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Jul;82(4-5):367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23657790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):786-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2016 May 04;12:99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27168720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(6):873-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16146526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;453:169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18712302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 4;496(7443):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2020 Jan;25(1):80-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31677931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 10;9(3):e85761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24614886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Jul 22;18(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28737678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2018 Feb 19;19(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29458393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Jun 10;15(6):10424-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24918296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:465-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568701</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Grèce</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
<li>Dakota du Sud</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Andersen, Ethan J" sort="Andersen, Ethan J" uniqKey="Andersen E" first="Ethan J" last="Andersen">Ethan J. Andersen</name>
</region>
<name sortKey="Nelson, Dillon" sort="Nelson, Dillon" uniqKey="Nelson D" first="Dillon" last="Nelson">Dillon Nelson</name>
<name sortKey="Nepal, Madhav P" sort="Nepal, Madhav P" uniqKey="Nepal M" first="Madhav P" last="Nepal">Madhav P. Nepal</name>
<name sortKey="Purintun, Jordan M" sort="Purintun, Jordan M" uniqKey="Purintun J" first="Jordan M" last="Purintun">Jordan M. Purintun</name>
</country>
<country name="Grèce">
<noRegion>
<name sortKey="Mermigka, Glykeria" sort="Mermigka, Glykeria" uniqKey="Mermigka G" first="Glykeria" last="Mermigka">Glykeria Mermigka</name>
</noRegion>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32849852
   |texte=   Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32849852" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020